Proteomics

From Wikipedia on 6-Dec-2012

URL: http://en.wikipedia.org/wiki/Proteomics

Proteomics is the large-scale study of proteins, particularly their structures and functions. Proteins are vital parts of living organisms, as they are the main components of the physiological metabolic pathways of cells. The term “proteomics” was first coined in 1997 to make an analogy with genomics, the study of the genes. The word “proteome” is a blend of “protein” and “genome”, and was coined by Marc Wilkins in 1994 while working on the concept as a PhD student. The proteome is the entire complement of proteins, including the modifications made to a particular set of proteins, produced by an organism or system. This will vary with time and distinct requirements, or stresses, that a cell or organism undergoes. Proteomics is an interdisciplinary formed on the basis of the research and development of the Human Genome Project, is also an emerging scientific research and exploration of the proteome research from the overall level of intracellular protein composition, structure, and its own unique activity patterns. It is an important component of functional genomics.

 
Complexity of the problem

After genomics and transcriptomics, proteomics is considered the next step in the study of biological systems. It is much more complicated than genomics mostly because while an organism’s genome is more or less constant, the proteome differs from cell to cell and from time to time. This is because distinct genes are expressed in distinct cell types. This means that even the basic set of proteins which are produced in a cell needs to be determined.

In the past this was done by mRNA analysis, but this was found not to correlate with protein content. It is now known that mRNA is not always translated into protein, and the amount of protein produced for a given amount of mRNA depends on the gene it is transcribed from and on the current physiological state of the cell. Proteomics confirms the presence of the protein and provides a direct measure of the quantity present.

 
Post-translational modifications

Not only does the translation from mRNA cause differences, but many proteins are also subjected to a wide variety of chemical modifications after translation. Many of these post-translational modifications are critical to the protein’s function.

 
Phosphorylation

One such modification is phosphorylation, which happens to many enzymes and structural proteins in the process of cell signaling. The addition of a phosphate to particular amino acids—most commonly serine and threonine mediated by serine/threonine kinases, or more rarely tyrosine mediated by tyrosine kinases—causes a protein to become a target for binding or interacting with a distinct set of other proteins that recognize the phosphorylated domain.

Because protein phosphorylation is one of the most-studied protein modifications, many “proteomic” efforts are geared to determining the set of phosphorylated proteins in a particular cell or tissue-type under particular circumstances. This alerts the scientist to the signaling pathways that may be active in that instance.

 
Ubiquitination

Ubiquitin is a small protein that can be affixed to certain protein substrates by enzymes called E3 ubiquitin ligases. Determining which proteins are poly-ubiquitinated can be helpful in understanding how protein pathways are regulated. This is therefore an additional legitimate “proteomic” study. Similarly, once it is determined which substrates are ubiquitinated by each ligase, determining the set of ligases expressed in a particular cell type will be helpful.

 
Additional modifications

Listing all the protein modifications that might be studied in a “Proteomics” project would require a discussion of most of biochemistry; therefore, a short list will serve here to illustrate the complexity of the problem. In addition to phosphorylation and ubiquitination, proteins can be subjected to (among others) methylation, acetylation, glycosylation, oxidation and nitrosylation. Some proteins undergo ALL of these modifications, often in time-dependent combinations, aptly illustrating the potential complexity one has to deal with when studying protein structure and function.

 
Distinct proteins are made under distinct settings

Even if one is studying a particular cell type, that cell may make different sets of proteins at different times, or under different conditions. Furthermore, as mentioned, any one protein can undergo a wide range of post-translational modifications.

Therefore a “proteomics” study can become quite complex very quickly, even if the object of the study is very restricted. In more ambitious settings, such as when a biomarker for a tumor is sought – when the proteomics scientist is obliged to study sera samples from multiple cancer patients – the amount of complexity that must be dealt with is as great as in any modern biological project.

 
Limitations of genomics and proteomics studies

Proteomics typically gives us a better understanding of an organism than genomics. First, the level of transcription of a gene gives only a rough estimate of its level of expression into a protein. An mRNA produced in abundance may be degraded rapidly or translated inefficiently, resulting in a small amount of protein. Second, as mentioned above many proteins experience post-translational modifications that profoundly affect their activities; for example some proteins are not active until they become phosphorylated. Methods such as phosphoproteomics and glycoproteomics are used to study post-translational modifications. Third, many transcripts give rise to more than one protein, through alternative splicing or alternative post-translational modifications. Fourth, many proteins form complexes with other proteins or RNA molecules, and only function in the presence of these other molecules. Finally, protein degradation rate plays an important role in protein content.

 
Establishing protein–protein interactions

Most proteins function in collaboration with other proteins, and one goal of proteomics is to identify which proteins interact. This is especially useful in determining potential partners in cell signaling cascades.

Several methods are available to probe protein–protein interactions. The traditional method is yeast two-hybrid analysis. New methods include protein microarrays, immunoaffinity chromatography followed by mass spectrometry, dual polarisation interferometry, Microscale Thermophoresis and experimental methods such as phage display and computational methods

 
Practical applications of proteomics

One of the most promising developments to come from the study of human genes and proteins has been the identification of potential new drugs for the treatment of disease. This relies on genome and proteome information to identify proteins associated with a disease, which computer software can then use as targets for new drugs. For example, if a certain protein is implicated in a disease, its 3D structure provides the information to design drugs to interfere with the action of the protein. A molecule that fits the active site of an enzyme, but cannot be released by the enzyme, will inactivate the enzyme. This is the basis of new drug-discovery tools, which aim to find new drugs to inactivate proteins involved in disease. As genetic differences among individuals are found, researchers expect to use these techniques to develop personalized drugs that are more effective for the individual.

Leave a Reply

Your email address will not be published. Required fields are marked *